Level of FACT defines the transcriptional landscape and aggressive phenotype of breast cancer cells

نویسندگان

  • Daria Fleyshman
  • Laura Prendergast
  • Alfiya Safina
  • Geraldine Paszkiewicz
  • Mairead Commane
  • Kelsey Morgan
  • Kristopher Attwood
  • Katerina Gurova
چکیده

Although breast cancer (BrCa) may be detected at an early stage, there is a shortage of markers that predict tumor aggressiveness and a lack of targeted therapies. Histone chaperone FACT, expressed in a limited number of normal cells, is overexpressed in different types of cancer, including BrCa. Recently, we found that FACT expression in BrCa correlates with markers of aggressive BrCa, which prompted us to explore the consequences of FACT inhibition in BrCa cells with varying levels of FACT.FACT inhibition using a small molecule or shRNA caused reduced growth and viability of all BrCa cells tested. Phenotypic changes were more severe in "high- FACT" cells (death or growth arrest) than in "low-FACT" cells (decreased proliferation). Though inhibition had no effect on the rate of general transcription, expression of individual genes was changed in a cell-specific manner. Initially distinct transcriptional profiles of BrCa cells became similar upon equalizing FACT expression. In "high-FACT" cells, FACT supports expression of genes involved in the regulation of cell cycle, DNA replication, maintenance of an undifferentiated cell state and regulated by the activity of several proto-oncogenes. In "low-FACT" cells, the presence of FACT reduces expression of genes encoding enzymes of steroid metabolism that are characteristic of differentiated mammary epithelia.Thus, we propose that FACT is both a marker and a target of aggressive BrCa cells, whose inhibition results in the death of BrCa or convertion of them to a less aggressive subtype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Expression Changes in Pomegranate Peel Extract-Treated Triple-Negative Breast Cancer Cells

Background: Triple-negative breast cancer (TNBC) is treated with highly aggressive non-targeted chemotherapies. Safer and more effective therapeutic approaches than those currently in use are needed. Natural pomegranate peel extract (PPE) has recently been found to inhibit breast cancer progression; however, its mechanisms of action remain unclear. We hypothesized that transcriptional chan...

متن کامل

Upregulation of HOTAIR Transcript Level in Tumor Tissue of Iranian Women with Breast Cancer

Background:Dysregulation of HOX Transcript Antisense Intergenic RNA (HOTAIR) has been linked to the etiopathogenesis of several human cancers. According to epidemiological evidences, the risk of susceptibility to breast cancer varies among different populations. This study was designed to determine the transcriptional level of HOTAIR in tumor cells of breast cancer pat...

متن کامل

Modeling Breast Acini in Tissue Culture for Detection of Malignant Phenotype Reversion to Non-Malignant Phenotype

Backgrounds: Evidence is accumulating to support disruption of tissue architecture as a powerful event in tumor formation. For the past four decades, intensive cancer research with the premise of “cancer as a cell based-disease” focused on finding oncogenes or tumor suppressor genes. However, the role of the tissue architecture was neglected. Three dimensional (3D) cell cultures which can recap...

متن کامل

Transcriptional effects of metal ions on the bovine oxytocin and the thymidine kinase-ERE promoter through the estrogen receptor a in MDA-MB 231 breast cancer cell line

BACKGROUND: Some of metal ions as environmental pollutants show estrogenic activity. This xenostrogenic compounds can be caused carcinogenicity in organs. The mechanism of carcinogenicity of metal ions is not clarified. OBJECTIVES: In this study, we investigated the Transcriptional effects of variety of metal ions on the bovine oxytocin and the thymidine kinase-ERE promoter by estrogen receptor...

متن کامل

Development of RNA aptamers as molecular probes for HER2+ breast cancer study using cell-SELEX

Objective(s): Development of molecules that specifically recognize cancer cells is one of the major areas in cancer research. Human epidermal growth factor receptor 2 (HER2) is specifically expressed on the surface of breast cancer cells. HER2 is associated with an aggressive phenotype and poor prognosis. In this study we aimed to isolate RNA aptamers that specifically bind to HER2 overexpressi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017